Evolution of enzymatic activities in the enolase superfamily: identification of the general acid catalyst in the active site of D-glucarate dehydratase from Escherichia coli.
نویسندگان
چکیده
D-Glucarate dehydratase from Escherichia coli (GlucD), a member of the enolase superfamily, catalyzes the dehydration of both D-glucarate and L-idarate to form 5-keto-4-deoxy-D-glucarate (KDG). Previous mutagenesis and structural studies identified Lys 207 and the His 339-Asp 313 dyad as the general basic catalysts that abstract the C5 proton from L-idarate and D-glucarate, respectively, thereby initiating the reaction by formation of a stabilized enediolate anion intermediate [Gulick, A. M., Hubbard, B. K., Gerlt, J. A., and Rayment, I. (2000) Biochemistry 39, 4590-4602]. The vinylogous elimination of the 4-OH group from this intermediate presumably requires a general acid catalyst. The structure of GlucD with KDG and 4-deoxy-D-glucarate bound in the active site revealed that only His 339 and Asn 341 are proximal to the presumed position of the 4-OH leaving group. The N341D and N341L mutants of GlucD were constructed and subjected to both mechanistic and structural analyses. The N341L but not N341D mutant catalyzed the dehydrofluorination of 4-deoxy-4-fluoro-D-glucarate, demonstrating that in this mutant the initial proton abstraction from C5 can be decoupled from elimination of the leaving group from C4. The kinetic properties and structures of these mutants suggest that either Asn 341 participates in catalysis as the general acid that facilitates the departure of the 4-leaving group or is essential for proper positioning of His 339. In the latter scenario, His 339 would function not only as the general base that abstracts the C5 proton from D-glucarate but also as the general acid that catalyzes both the departure of the 4-OH group and the stereospecific incorporation of solvent hydrogen with retention of configuration to form the KDG product. The involvement of a single functional group in this reaction highlights the plasticity of the active site design in members of the enolase superfamily.
منابع مشابه
Evolution of enzymatic activities in the enolase superfamily: crystallographic and mutagenesis studies of the reaction catalyzed by D-glucarate dehydratase from Escherichia coli.
D-Glucarate dehydratase (GlucD) from Escherichia coli catalyzes the dehydration of both D-glucarate and L-idarate as well as their interconversion via epimerization. GlucD is a member of the mandelate racemase (MR) subgroup of the enolase superfamily, the members of which catalyze reactions that are initiated by abstraction of the alpha-proton of a carboxylate anion substrate. Alignment of the ...
متن کاملEvolution of enzymatic activities in the enolase superfamily: crystal structure of (D)-glucarate dehydratase from Pseudomonas putida.
The structure of (D)-glucarate dehydratase from Pseudomonas putida (GlucD) has been solved at 2.3 A resolution by multiple isomorphous replacement and refined to a final R-factor of 19.0%. The protein crystallizes in the space group I222 with one subunit in the asymmetric unit. The unit cell dimensions are a = 69.6 A, b = 108.8 A, and c = 122.6 A. The crystals were grown using the batch method ...
متن کاملEvolution of enzymatic activities in the enolase superfamily: crystal structures of the L-Ala-D/L-Glu epimerases from Escherichia coli and Bacillus subtilis.
The members of the enolase superfamily catalyze different overall reactions, yet share a partial reaction that involves Mg(2+)-assisted enolization of the substrate carboxylate anion. The fate of the resulting enolate intermediate is determined by the active site of each enzyme. Several members of this superfamily have been structurally characterized to permit an understanding of the evolutiona...
متن کاملThe enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids.
We have discovered a superfamily of enzymes related by their ability to catalyze the abstraction of the alpha-proton of a carboxylic acid to form an enolic intermediate. Although each reaction catalyzed by these enzymes is initiated by this common step, their overall reactions (including racemization, beta-elimination of water, beta-elimination of ammonia, and cycloisomerization) as well as the...
متن کاملIdentification and characterization of two new 5-keto-4-deoxy-D-Glucarate Dehydratases/Decarboxylases
BACKGROUND Hexuronic acids such as D-galacturonic acid and D-glucuronic acid can be utilized via different pathways within the metabolism of microorganisms. One representative, the oxidative pathway, generates α-keto-glutarate as the direct link entering towards the citric acid cycle. The penultimate enzyme, keto-deoxy glucarate dehydratase/decarboxylase, catalyses the dehydration and decarboxy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 40 34 شماره
صفحات -
تاریخ انتشار 2001